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Abstract 
The paper  presents  two  path  planners suitable for plan- 
etary  rovers.  The  first  is based on fuzzy description of 
the terrain, and genetic algorithm to find a traversable 
path  in  a rugged terrain. The second planner  uses  a 
global optimization method with  a cost function that is 
the path  distance divided by  the velocity limit obtained 
from the consideration of the rover  static and dynamic 
stability. A description of both methods is provided, 
and the results of paths produced are given which show 
the effectiveness of the path  planners  in finding  near 
optimal paths.  The features of the methods and their 
suitability and application for rover path planning are 
compared. 

1 Introduction 
Following the successful launch and deployment of 

Mars Sojourner rover, NASA has planned further rover 
missions to Mars starting in 2001 with Marie Curie, 
a rover similar to  the Sojourner. Two additional rover 
missions in 2003 and 2005 have been planned for in-situ 
experiments, and  another in 2007 for sample return to 
Earth. An important element for the success of these 
missions  is incorporating a reasonably high  level of au- 
tonomy in the rover so that it  can traverse distances of 
100 meters or more per communication cycle. In order 
to traverse  these  distances,  it is  necessary to delegate 
the motion planning  task to  the rover using the image 
obtained from mast  mounted cameras. The challenge 
is then to use these images to perform on-board path 
planning. 

The existing path planners focus almost exclusively 
on obstacle avoidance, treating obstacles as forbidden 
regions and  the rest of the terrain as free spaces [l]. 
This  binary environment is not  appropriate for the 
Martian  terrain and a rover that can climb  over  some 
rocks [2] if such traversals result in  more optimal  routes. 
In fact NASA's experience with Sojourner has revealed 

many  cases  where a binary  obstacle model has resulted 
in halted motions, often leaving the rover in an undesir- 
able situation [3]. Recently several path planners have 
been  developed that consider the traversability of the 
terrain [4]-[7]. Terrain topology and simple vehicle  dy- 
namics are considered in [4] to generate global optimal 
paths on general terrain.  In [5] the shortest feasible 
path for  off-road  vehicles  is computed. A genetic  algo- 
rithm is  used  in [6] to synthesize path from segments, 
each evaluated for its static stability and for satisfying 
certain mission tasks.  A recently developed planner [7] 
uses  fuzzy  logic to characterize the  terrain traversabil- 
ity, and  then finds traversable paths in a rocky terrain. 

The purpose of this  paper is to discuss two path plan- 
ners  for  possible Mars rover applications.  The first al- 
gorithm is  based  on  fuzzy characterization of the ter- 
rain roughness, and the use of a genetic planner to op- 
timize a fitness function. The second algorithm con- 
siders constraints imposed by certain vehicle dynam- 
ics and  terrain topology to come up with an optimal 
path.  The common feature of both planners is finding 
paths that  are optimal  in the sense of both distances 
and traversability, where the  latter quantifies the ease 
of traversal of the  terrain.  These two algorithms find 
paths that result in reduced rover energy consumption 
and enable exploring larger regions of the Martian  ter- 
rain. 

2 Genetic Path Planner 
The  path planner starts by creating several random 

paths between start  and goal points on the  terrain. 
These initial paths in general go though rough or im- 
passable regions  on the  terrain,  and must be improved. 
This improvement  is achieved by applying certain g e  
netic operators to a randomly selected path from the 
population. Each genetic operator  has a particular role 
in bringing about a change in the  path. For example, 
replace operator replaces an undesirable way-point (a 



way-point on a rough region), with a random and po- 
tentially better way-point. The selection of particular 
operator is based on the probability assigned to  it. Af- 
ter a genet,ic operation is performed, the quality of all 
paths  are  compared,  and  the worst path is eliminated 
from the population. The process of applying a ge- 
netic operator  to  create a new path, and eliminating 
the worst path, is referred to as a generation. The pop- 
ulation goes through generations and is thus evolved. 
After each generation, the quality of the  paths is either 
improved or in the worst case remain unchanged. The 
evolution is continued until an acceptable path is found, 
or until a preset number of generations are performed. 
2.1 Terrain  Roughness 

Consider a terrain divided into a grid of regular 
square cells  whose  size depends on the dimension of the 
rover, and  the desired resolution of surface description. 
The roughness of a flat obstacle free cell  is assigned a 
value of 0, and  that of a rugged cell with large obsta- 
cles  is assigned a value of 1. The measure of roughness 
depends on a number of parameters as follows: 

0 Height of the tallest  obstacle in the cell - The rough- 
ness  becomes smaller with a decrease in the rock height. 

0 Size or surface area of the cell  occupied  by obstacles 
or rocks - If two cells have rocks of the same height, the 
region with less rock occupied area is smoother and 
thus  has a lower roughness value. 

In  addition to roughness, two path dependent quan- 
tities, namely path slope and curvature, affect the dif- 
ficulty of the traversal by a rover. These will be con- 
sidered in Section 2.2. 

The most commonly used sensors for  mobile robots 
are  cameras and their associated image processing 
hardware and software. Despite the availability of  vi- 
sion processing software, exact determination of the 
heights and sizes of rocks affecting roughness  is not pos- 
sible. These  parameters  can  be found, at best, approxi- 
mately due to errors,  misinterpretations  and ambiguity 
involved in extracting information from  images. It is 
therefore essential to set  the problem in a fuzzy and 
approximate reasoning framework. 

The height of the tallest rock  in the cell under con- 
sideration; h, and  the size or surface area occupied by 
rocks in this cell, s,  are used to find the cell roughness 
p .  The crisp values of h, s and p are fuzzified to  obtain 
the linguistic variables A ,  B and ,,, respectively. The ”if- 
then rule” of the following form is  employed to obtain 
the fuzzy roughness, 

i f  A is  H k  and S’ is s k  then is p k  (1) 

where H k ,   S k  and p k ,  k = 1,2 ,  . . . , Y are  the linguistic 
values associated with 6, B and ,,, respectively, and Y 

is the number of linguistic values. The fuzzy sets H k ,  

sk and p k  are used to quantify the linguistic state- 
ments ”i is  H k ” ,  ” g  i s  S k ”  and ”,, i s  p k ” ,  

respectively. The fuzzy sets H k  for the hight are 
chosen as very low (HI z V L ) ,  low ( H z  LO), 
medium (Hg G M E ) ,  high (H4 H I )  and very  high 
( H s  z V H ) .  The membership functions P H k  for these 
fuzzy sets are  standard  triangular  and have equal base 
width with a 25% overlap. The fuzzy sets associated 
with the rock  size are  tiny (5’1  3 T I ) ,  small (S2 E S M ) ,  
medium (Sg E M E ) ,  large ( S 4  E LG) and  extra large 
(275 f X L ) ,  and  are also triangular with 25% overlap. 
The fuzzy sets for roughness are very low (pl E V L ) ,  
low (p2  E LO), medium ( p B  E M E ) ,  high (p4 E H I )  
and very  high (/Is = V H ) .  The membership functions 

for the roughness are designed to be  triangular 
with different base widths to give more weighting to 
rougher terrains. 

The rule matrix implementing (1) is  given in Figure 
1, and consists of 25 rules which are self-explanatory. 
Zadeh’s compositional rule of inference, and center of 
height defuzzification method is used to obtain  the crisp 
value of the cell roughness p .  

2.2 Path  Representation 
A path is represented by a sequence of way-points 

connecting the  start  to  the goal. The way-points w k ,  

k = 1,2,  , m  are specified  by their ( Z k , Y k )  coordi- 
nates on the  terrain. The generation and evolution of 
a path refers to  the creation and modification of the 
way-points. These way-points in turn specify the ter- 
rain cells that  the  path traverses over. A cell that is 
located on a path, will be referred to as a path cell, and 
has two main attributes as follows: 

0 The roughness pi of the cell, which provides infor- 
mation on the heights, sizes and concentration of rocks 
on a cell, as described in Section 2.1. 

0 The curvature or jaggedness of a path cell is ob- 
tained using the information about  the way-points. 
Specifically, the curvature (.k of the way-point w k  is 
defined as 

’ P k  

(2) 

where d k  is the perpendicular  distance of w k  to  the 
line segment joining the previous way-point w k - 1  to 
the next way-point w k + 1 ,  and D k  is the distance be- 
tween W k - 1  and w k + l .  Note that ( k  is a dimensionless 
quantity,  and that 0 5 & < 00. Furthermore, (2) also 
gives the curvature of the  path cell that contains a way- 
point. 

It is noted from Section 2.1 that roughness is normal- 
ized and varies between 0 and 1. However, curvature 
can have large values. In  order to enable easy com- 
parison between the two  cell attributes, we normalize 



curvature as  follows: 

(.  - 1 - e-"<' 
I -  (3) 

where a is a constant whose  role  will  be explained 
shortly. Note that 0 5 C; 5 1 for all values of a. 

The above two quantities, namely roughness and cur- 
vature, which are  attributes of path cells, are combined 
to define a cell impedance 71, as follows 

The cell impedance varies between 0 and 1 and quan- 
tifies the difficulty of the  path cell traversal by a rover. 
Consequently, a path cell containing no rocks that is  lo- 
cated on a straight  path segment will have a minimum 
impedance of 0. On  the  other hand a very rough cell on 
a jagged path segment will have a maximum impedance 
of 1. The  constant a in (3) determines the weight  given 
to curvature  relative to  the roughness. Lower values of 
a reduce the contribution of curvature to  the overall cell 
impedance. It is noted that other path  attributes such 
as slope can easily be included in the above formulation 
of the  path impedance. 

A cell with an impedance of more than a threshold 
becomes intraversable. The value of the threshold is 
chosen based on the mobility characteristics of the par- 
ticular rover being used. We identify a path as being 
traversable if every cells on  the  path is traversable,  oth- 
erwise the whole path becomes intraversable. In the ge- 
netic evolutionary process, these two type of paths  are 
treated  separately.  Although,  traversable paths have 
priority over intraversable paths,  the  latter  are not  au- 
tomatically discarded since they may  prove to produce 
good offsprings later on during  the evolutionary pro- 
cess. The path impedance is  defined as the sum of 
impedances of all cells on  the  path,  that is 

n 

k=i 

When a population of paths consisting of both 
traversablq +pd intraversable  paths  are compared for 
selection, any traversable path is given preference over 
best (lowest 7)) intraversable path. However,  when the 
population consists of only traversable  paths or only in- 
traversable paths,  then  the selection is based on  lower 
values of 7. 

2.3 Genetic Operators 
In order to evolve paths from one generation to  the 

next, several operators have been devised. Two of these 
operators, namely cross over and  mutation,  are com- 
monly  used in genetic algorithms.  Others are specif- 
ically designed for the  path planner.  Operators  are 

applied to way-points, and as a results of changes  in 
way-points, the  path cells are also changed. Note that 
each time an operator is applied, a new path is  gener- 
ated. If this new path  produces a path impedance that 
is lower than  the impedance of any path in the popu- 
lation,  it is accepted as a new member of population, 
and  the path with highest impedance is discarded. 

Cross-Over 
This  operator randomly selects two paths from the 

population, say PI and P2, and divides each path  into 
two path segments about a randomly elected way-point. 
Denoting these paths by PI = ( P I , ,  P12) and P2 = 
(P21, P22), where Pij is the  j-th segment of path i ,  then 
two  new paths  are formed as = (P l l ,  P22) and 4 = 
(P21, P12). 

Mutate 
This  operator randomly selects a path  and a way- 

point in this  path. It then changes the z ,y  coordinates 
of the selected way-point with random values. Mutate 
operator can produce a significant change in the  path. 

Replace 
This  operator is applied to  an intraversable path. It 

replaces an intraversable way-point with one or more 
way-points whose location and number are random. If 
there  are more than one intraversable way-points, one 
of them is selected randomly for replacement. 

Swap 
The operator interchanges the locations of two ran- 

domly selected way-points on a randomly selected path. 
The swap operator can be applied to  both traversable 
and intraversable paths. It has  the possibility of  re- 
moving or introducing a "zig-zag" . 

Smooth 
The role of this  operator is to reduce sharp  turns. 

The way-point with the highest curvature, say w k ,  is 
selected and two  new way-points are inserted, one on 
a randomly selected  cell between the way-points wk-1 

and W k  and the other on a cell between wk and Wk+l. 

After this insertion, the way-point wk is  removed. The 
effect of this operation is the smoothing of a sharp  turn. 
This  operator is  only applied to traversable paths. 

Pull-out 
This  operator is intended to pull out a path segment 

from inside an intraversable region to its surrounding 
traversable region. Pull-out is more elaborate than  the 
other operators,  and  details of its implementation is 
omitted here for the sake of brevity. 

The probability of occurrence of an operator depends 
on the role  played by it in the evolution of paths. An 



adaptation scheme is devised to modify the probabili- 
ties based on the population diversity, and traversabil- 
ity. For example, if most paths in the population are 
similar and have  high impedances, mutation is  given 
higher probability and cross over  is  assigned a smaller 
probability. This is due  to the fact that in this  situa- 
tion cross over of intraversable  paths also produce other 
intraversable paths  and a substantial change is  needed 
which  is achieved by mutation. 

3 The  Global  Optimization  Planner 
This planner formulates the motion planning prob- 

lem as a three  stage  optimization. At the lowest  level, a 
given path is evaluated for its traversability by comput- 
ing the maximum speeds along the  path at which the 
vehicle  is dynamically stable. The second  level consists 
of a parameter  optimization that selects a locally opti- 
mal path in the neighborhood of an initial guess. The 
third  and highest level of the optimization selects the 
initial guesses for the local optimization. The global op- 
timization is based on a branch  and bound search that 
prunes the initial  set of all paths between the end  points 
to a small number of candidates for the local optimiza- 
tion [4]. These  candidates represent the most promis- 
ing regions, one of which contains the global optimal 
path.  Optimizing  these paths with the local optimiza- 
tion yields the best path, in  addition to a number of 
good alternatives.  These paths  are not necessarily the 
shortest,  but  they  are  traversable at the widest speed 
range of all paths with similar or shorter  lengths, as is 
demonstrated  in several examples in this  paper. 
3.1 Terrain and Path Representation 

The  terrain is represented by a cubic B patch, which 
is a parametric surface made of a mesh of cubic splines. 
A typical point p on a single patch in three dimensional 
space is a function of two parameters, v and w, : 

p = VMRMTWT (6) 

where V = [v3, v2, v, 11, v = [0,1], W = [w3,w2, w, 11, 
w = [0,1] M is the 4 x 4 matrix specifying the  type 
of spline used to construct  the patch,  and R is a 4 x 4 
matrix of 16 control points. 

The control  points of the patch  are generated by plac- 
ing a uniform grid on the map-range data generated 
from stereo images taken by the on-board mast cam- 
era. The resolution of this grid is  chosen  economically 
at about half the rover  size: roughly 2 0 n  between 
neighboring points.  This ensures that obstacles the size 
of the rover and larger are depicted by the B-patch. 
Smaller obstacles may be filtered out. 

The  path is represented by a smooth curve on the 
surface, obtained by parameterizing v and w by a single 
parameter u: 

C ( U )  = p(v(u) ,  ~ ( u ) )  = V(u)MRMTWT(u) (7) 

Reducing the v - w space to  a line reduces the B 
patch to  a continuous curve that is guaranteed  to  stay 
on the surface. 
3.2 Vehicle  Model 

At top speeds of 10 - 20 cm/s,  the motion planning 
problem  for  Mars  Rover can be considered a kinematic 
problem. However, we do account for certain rover  dy- 
namics  for the purpose of quantifying traversability and 
dynamic stability, with the premise that  paths  that are 
traversable at a wide speed range are safer than those 
that  are not. 

The vehicle  is  modeled as a point mass, suspended 
above ground at the location of the vehicle’s center of 
mass. The height of the center of mass above ground 
and  the width between the wheels are used to evaluate 
stability with respect to lateral  tip over. 

The external forces acting  on the vehicle consist of 
the friction force F (the sum of all the horizontal tire 
forces), the normal force R (the sum of all normal tire 
forces) applied by ground on the vehicle in the r direc- 
tion,  and  the gravity force. 

The equation of motion of the vehicle are  written in 
the vehicle  fixed frame in  terms of the tangential speed 
s and  the  tangential acceleration 5 [4] 

f t  = m g k t  +ms  (8) 
f q  = m g k ,  + mm,s2 (9) 
R = m g k ,  + mm,S2 (10) 

where f t  and f, are  the components of the friction force 
tangent  and normal to  the  path, k t ,   k ,  and k, are  the 
projection of the vertical unit  vector, k ,  on the respec- 
tive axis of the vehicle  fixed coordinate frame, and 1/1c 
is the  path  curvature, . The moment of the friction 
force around the center of mass is considered later when 
we account for the  tip over constraint. 

Equations (8) to (10) are used to determine the fea- 
sible speed and acceleration for given limits on the fric- 
tion and normal forces. 
3.3 Dynamic Constraints 

Constraints between the vehicle and ground are con- 
sidered to ensure vehicle dynamic stability along the 
path. 

Sliding Constraint 
The maximum friction force  is a function of the nor- 

mal  force and  the coefficient of friction between the 
wheels and ground: 

Substituting (8)- (10) in (ll), then solving for s yields 
constraints of the form [4] 

-gkt + 5 s I -gkt - (12) 



where 
A = ai4 + 2bi2 + c 2 0 (13) 

yields constraints on the feasible  vehicle speed along 
the  path.  The feasible speed range is determined by the 
roots of (13). Only the positive roots are of interest. 

Contact Constraint 
To ensure that  the vehicle does not loose contact with 

ground on rough terrain,  the normal force R applied on 
the vehicle should be positive. ‘Setting R = 0 in ( lo) ,  
we obtain  the maximum speed allowed by the contact 
constraint: 

where n, is the projection of the  path normal, n, on 
the surface normal, r .  Equation (14) applies only for 
the cases where path curvature points opposite to  the 
direction of the surface normal. Note that  the velocity 
limit is infinite for a flat terrain (n, = 0), and zero for 
a sharp vertical bump (nn, = m), as expected. 

TipOver Constraint 
The tip-over constraint is obtained by expressing the 

limiting condition before the vehicle  is about  to tip- 
over in terms of i, s. The vehicle will not tip-over if 
the reaction force and  the  lateral friction force satisfy 
P I  

b f: I ( R j y  (15) 

Substituting (8) and (9) into (15) yields a constraint on 
3. similar to (13). 

Velocity Limit  Curve 
Plotting  the velocity limits  due to the dynamic con- 

straints along the  path  forms.the velocity limit curve in 
the phase plane s - i. It represents the upper bound for 
vehicle speeds for which the dynamic constraints dis- 
cussed earlier are satisfied. The height of the velocity 
limit represents a measure of safety and traversability: 
a zero velocity limit implies static instability, whereas a 
nonzero but low velocity limit implies a stable  but  dan- 
gerous position along the  path. Obviously, the higher 
the velocitfr Emit, the wider the speed range that  the 
vehicle can move along the  path without sliding, tip- 
ping over, or flying off the ground. 

3.4 Global Search and Local Optimization 
The search for the optimal path follows the method 

presented in [4]. It combines a grid search in the posi- 
tion space with a local optimization to yield the global 
optimal path for a variety of static and dynamic cost 
functions, such as distance and motion time. This 
approach  eliminates the search  in the 2n dimensional 
state-space  without sacrificing global optimality. 

The cost function for Mars rover  is computed by di- 
viding the  path length by the maximum constant speed 
that does not cross the velocity limits for that  path. 
This cost function is the minimum motion time at the 
constant speed along the  path. It quantifies the cumu- 
lative effects of path distance,  terrain topography, and 
vehicle dynamics. It also favors regions  with  high ve- 
locity limits, which are traversable at  the widest speed 
range. 

The optimization starts by searching for a set of best 
paths along a uniform grid over the  terrain, using the 
Dryfus algorithm. These paths  are pruned by retaining 
the best path in each neighborhood, each representing 
the neighborhood of a potential local minimum. Sub- 
mitting these paths to a local optimization that further 
minimizes the cost function yields the global optimal 
path in addition to a set of good alternatives.  This op- 
timization,  admits paths  that might go over obstacles if 
such a path is dynamically feasible and  it is  less costly 
than going around. 

4 Comparison of Results 
The two planners were tested on  images obtained 

from the JPL Mars Yard. The images  were electroni- 
cally manipulated to make the  terrain more challeng- 
ing by adding large rocks in the central region. A 
monochrome version of the color image used  for path 
planning is  shown in Fig. 2. 

In the absence of stereo images, the apparent rock 
height and size  were determined from a single image 
based on several assumptions on camera location and 
geometry. The height is estimated by multiplying the 
apparent height by a correction  factor derived from per- 
spective transformation. Similarly the size of a rock  is 
estimated from its  apparent  boundary by subjecting it 
to perspective transformation. The  the number of pix- 
els within the perspectively corrected boundary is then 
found, giving the size (area) of the rock. A contouimap 
is then  constructed on the basis of location, height and 
size of each obstacle. The contour  map of the Mars 
terrain  (Fig. 2) is  shown in Fig. 3, where darker areas 
correspond to higher elevations. This contour map was 
used by both  path  planner. 

For the genetic planner, the 512 x 512 pixel image 
representing a 10 square  meter region  was  divided into 
32 x 32 cells. The number of cells can be increased 
for higher resolution, if required. The impedance of 
each cell was determined using the method described 
in Section 2.1. A population size of five paths was cho- 
sen,  and these paths went through  the genetic evolu- 
tion described in Section 2. The initial intraversable 
paths were  quickly  evolved into  traversable  paths,  and 
as the evolution continued these  paths in turn changed 
into  shorter ones passing through less  rock concentrated 
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Fig 2. A reconstructed Mars image  Fig. 4. Three  paths  found by the  global  optimization 
planner  shown  on  contour  map 



areas  and avoiding larger rocks.  Near optimal paths 
were usually found after 200 to 400 iterations (genera- 
tions),  thus good paths were found very  quickly. Figure 
3 shows three  path  generated by the genetic algorithm. 
Path 1 starts  at the left part of the region near a rock 
and  the goal position is located to  the right of the re- 
gion at the base of a large rock. Path 2 starts  at  the 
lower  left corner and has the same goal location as Path 
1. Path 3 starts  at  the upper left corner and has its goal 
location in the lower center of the region. 

The global planner uses the contour map directly, 
and performs the optimization method described in 
Section 2. Figure 4 shows the paths found by the global 
planner for the same start and goal locations as those 
used for the genetic planner. 

Several observations are now made regarding the gen- 
erated  paths.  First,  the genetic planner produces the 
waypoints, and in Figure 3 these waypoints are con- 
nected by straight line segments. To obtain smoother 
paths,  these waypoints can be connected by cubic poly- 
nomials or any other  suitable  interpolations. It is also 
noted that in these  runs a low weighting (u in (3)) was 
assigned to curvature  relative to  the cell impedance to 
obtain  shorter  paths. As a result a path sometimes tra- 
verses  over small rocks to achieve shorter path lengths 
(and path impedance). However, a closer examination 
shows that all paths  are in  fact traversable by the rover 
(in this case NASA’s Rocky 7 rover [2]). The global 
optimization  planner produces smoother path due to 
using a finer grid resolution. 

Even though both planners attempt  to optimize their 
respective performance indices, they have  different  con- 
ceptual basis. The genetic planner employs a fuzzy  de- 
scription of the  terrain,  and  attempts  to come up with 
a path  that is short  and passes over reasonably smooth 
parts of the terrain. It delegates the local maneuvering 
of the rover along the planned path  to  the rover naviga- 
tion system. Thus  the rover kinematics and dynamics 
are only considered indirectly through  terrain topology 
during the  path planning phase. The global planner 
uses both  terrain topology information and a simplified 
kinematic/dynamic rover model to achieve both  path 
planning and.navigation. As a result of the added task 
of taking  kinematic/dynamic  constraints  into consider- 
ations,  it is generally more complex and requires more 
computation compared to  the genetic planner. This 
added complexity is justified provided that a reason- 
ably accurate  terrain topology can be constructed from 
the images of the  terrain,  and  that  the simplified  kine- 
matic/dynamic model can adequately represent the ac- 
tual rover behavior. On the other  hand, the genetic 
planner requires only imprecise information about  the 
terrain  but relies upon on-line hazard detection for  pos- 
sible local adjustments to  the path.  The  paths pro- 

duced by both planners are generally longer than  the 
shortest  paths between respective end points (Fig. 3 
and 4) but they seem to pass mostly through wider 
corridors and hence are safer. 

5 Conclusions 
The  path planners described in this paper share  the 

common attribute of attempting  to optimize certain 
performance indices. It has been  shown through plan- 
ning of paths for a simulated Mars terrain that both 
are capable of producing short  paths  that traverse over 
smooth parts of the  terrain  and avoid areas with large 
rocks.  While both  planners perform some  form of opti- 
mization, they are conceptually different. The genetic 
planner requires only an approximate description of the 
terrain  and  operates on the basis of evolutionary pro- 
cess and stochastic search to generate a near optimal 
path.  The global planner incorporates certain kinemat- 
ics and dynamics into  the planning phase, and require 
more  knowledge about  the environment and the rover. 
The relative simplicity of the genetic planner and  the 
benefit of incorporating  kinematic/dynamic  constraints 
of the global planner can be combined to achieve better 
results. For example, the genetic planner can quickly 
produce a number of paths based on imprecise terrain 
description and  the global planner can then evaluate or 
modify these paths to take  into consideration the rover 
kinematic/dynamic constraints. 
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